Estimating the Remaining Useful Life on an Aircraft Engine

In this blog post, we will see how much better a Machine Learning model we can create by having more breakdowns available for training. Thus, we have split the dataset in to 7, 30, and 100 breakdowns and will see how much better a Machine Learning model gets, when having a larger representation of the wear and tear degradation.

Image of a jet engine

What to look for in Vibration Sensors for Predictive Maintenance

Selecting the right sensors for predictive maintenance can be a jungle. This blog post will give you advices for what to look for and how you can get started on your journey. We will also take a look into common pitfalls and what you need to be aware of as a customer to get the right sensors which fits your production.

What to look for in sensors for Predictive Maintenance

The P-F Interval and Predictive Maintenance

What is the P-F interval and why is it important when talking about predictive maintenance? In this blog post you will get an introduction to the P-F interval and how predictive maintenance with machine learning can improve the detection of potential failure and give you the possibility to plan maintenance before a failure happens.


What it takes to deliver Machine Learning

Many address Machine Learning projects as black box solutions or product delivery.
However, Machine Learning projects delivered rightly is much more than that.
It gives you insight to whether you retrieve the right data, whether your hypotheses on patterns are true, and so much more.

What is needed to deliver machine learning

Big Data vs Right Data

We have talked about it for years now. Consultancies have been saying for a long time that we need it. Maybe you are even aiming towards it in your strategy?
What exactly is Big Data? and how did we get to talk so much about it?
Before reading further, try answering the following question - no cheating: How many V's defines Big Data?

Big Data is not Right Data

Estimating the Remaining Useful Life of a Water Pump

In this blog post, we will talk about the benefits of using Remaining Useful Life predictions as a main driver for planning maintenance and detecting wear and tear before problems arise. There is a high potential of both reducing total costs on maintenance and spare parts, but also on increasing the total operational uptime, by using data when planning maintenance intervals.

Diagram showing the predicted and true RUL of the water pump

Different approaches towards predictive maintenance

In this blog post we will go through the different approaches to predictive maintenance. Right data is always the foundation and different types of machine learning algorithms can be used depending on the current situation and the problem/value we are aiming for.

Different breakdowns.